吳杰 教授

學歷

清華大學原子科學系博士
陽明大學醫事技術系放射組學士

經歷

清華大學核子工程與科學研究所 副教授
中國醫藥大學生物醫學影像暨放射科學系 副教授

研究興趣

  1. 醫學與影像整合:利用人工智慧深度學習進行釔-90單光子電腦斷層影像與正子電腦斷層影像之影像合成與降噪。
  2. 電腦斷層影像處理與量化:利用電腦斷層影像進行三維骨質密度、脂肪肝與心血管鈣化指數之量化研究。
  3. 放射治療與劑量評估:開發具亞器官乳房之國人參考人假體並建立乳房劑量評估平台;釔-90肝癌治療之分葉肝臟劑量與體內劑量S值之模擬。
  4. 輻射防護:應用加馬能譜分析技術檢測台灣特種農產品之放射性核種分佈並評估國民輻射劑量。
  5. 蒙地卡羅模擬:乳腺劑量轉換因子引入皮膚厚度與異質乳腺分布轉換係數。
  6. 研究介紹:https://reurl.cc/LbEKe3

實驗室網站

醫學物理暨影像物理實驗室(MEPIP):https://www.facebook.com/groups/mepip
輻射度量中心食品檢驗分析實驗室(RMAC):https://www.facebook.com/RMACYM

聯絡資訊

辦公室:研究大樓一樓113室
電話:02-2826-7134
電郵:jaywu@nycu.edu.tw
食品檢驗分析實驗室:研究大樓一樓103室
電話:02-2826-7000 #65954

著作目錄

醫學物理與蒙地卡羅模擬相關

1.     K.J. Lai, T.Y. Chang, C.Y. Tu, J. Wu*, Three-layer heterogeneous mammographic phantoms for Monte Carlo simulation of normalized glandular dose coefficients in mammography. Scientific Reports, 10:2234, 2020. (乳房攝影劑量轉換因數開發)

2.     Y.L. Liu, S.J. Chang, F.Y. Lin, T.Y. Chang, J. Wu*, Suborgan breast dosimetry for breast nuclear medicine imaging using anthropomorphic software breast phantoms. RADIAT PHYS CHEM, 166:108488, 2020. (核醫體內劑量轉換因數開發)

3.     T.Y. Shih, Y.L. Liu, H.H. Chen, J. Wu*, Dose evaluation of a blood irradiator using Monte Carlo simulation and MAGAT gel dosimeter. NUCL INSTRUM METH A, 954:161249, 2020. (照血儀模擬)

4.     S.J. Chang, J.T. Hsu, S.Y. Hung, Y.L. Liu, S.H. Jiang, Jay Wu*, Dose conversion coefficients based on Taiwanese reference phantoms and Monte Carlo simulations for use in external radiation protection. HEALTH PHYS, 112(5):470-477, 2017. (台灣參考人假體體外劑量轉換因數)

5.     Shu-Jun Chang, Shih-Yen Hung, Yan-Lin Liu, Shiang-Huei Jiang, Jay Wu*, Evaluation of dose conversion coefficients for external exposure using Taiwanese reference man and woman. RADIAT PROT DOSIM, 167:247-250, 2015. (台灣男性與女性參考人假體開發)

6.     J. Wu,*, C.T. Shih, C.H. Ho, Y.L. Liu, Y.J. Chang, M.M. Chao, J.T. Hsu, Radiation dose evaluation of dental cone beam computed tomography using an anthropomorphic adult head phantom. RADIAT PHYS CHEM, 104:287-291, 2014. (牙科電腦斷層劑量評估)

7.     T.Y. Shih, Jay Wu (co-fisrt), C.S. Muo, C.H. Kao, The association between leukemia and x-ray in children – a nationwide study. J PAEDIATR CHILD H, 50:615-618, 2014. (白血病與輻射劑量之關係)

8.     J. Wu, Y. L. Liu, S. J. Chang, M. M. Chao, S. Y. Tsai, D. E. Huang*, Dose point kernel simulation for monoenergetic electrons and radionuclides using Monte Carlo techniques. RADIAT PROT DOSIM, 152(1-3):119-124, 2012. (蒙地卡羅模擬系統之點核仁劑量模擬)

9.     J. Wu, S.J. Chang, K.S. Chuang*, Y.W. Hsueh, K.C. Yeh, J.N. Wang, W.P. Tsai, Dose evaluation of boron neutron capture synovectomy using the THOR epithermal neutron beam: a feasibility study. PHYS MED BIOL, 52:1747-1756, 2007. (利用蒙地卡羅技術評估硼捉中子滑膜切除之劑量)

10.   J. Wu*, C.H. Lu, S.J. Chang, Y.M. Yang, B.J. Chang, J.H. Teng, Three-dimensional dose evaluation system using real-time wind field information for nuclear accidents in Taiwan. NUCL INSTRUM METH A, 565:812-820, 2006. (核災即時風場三微劑量評估)

11.   J. Wu, Y.M. Yang, I.J. Chen, H.T. Chen, K.S. Chuang*, Reevaluation of the emergency planning zone for nuclear power plants in Taiwan using MACCS2 Code. APPL RADIAT ISOTOPES, 64:448-454, 2006. (國內核電廠緊急應變區範圍再評估)

放射治療與劑量量測相關

1.     TY Shih, BT Hsieh, TH Yen, FY Lin, J Wu*, Sensitivity enhancement of methacrylic acid gel dosimeters by incorporating iodine for computed tomography scans. PHYS MEDICA, 63:1-6, 2019.

2.     TY Shih, BT Hsieh, J Wu*, Using an on-board cone-beam computed tomography scanner as an imaging modality for gel dosimetry: A feasibility study. APPL RADIAT ISOTOPES, 151:242, 2019.

3.     Chun-Chao Chuang and Jay Wu*, Dose and slice thickness evaluation with nMAG gel dosimeters in computed tomography. Scientific Reports, 8:2632, 2018.

4.     T.Y. Shih, T.H. Yen, Y.L. Liu, D. Luzhbin, J. Wu*, Evaluation of characteristics of high-energy electron beams using N-isopropyl-acrylamide gel dosimeter. RADIAT PHYS CHEM, 140:379-382, 2017.

5.     Tian-Yu Shih, Jay Wu (co-first), Cheng-Ting Shih, Yao-Ting Lee, Shin-Hua Wu, Chun-Hsu Yao, Bor-Tsung Hsieh, Small-field measurements of 3D polymer gel dosimeters through optical computed tomography. PLOS ONE, 11(3):e0151300, 2016.

6.     C.H. Chen, J. Wu (co-first), B.T. Hsieh, D.S. Chen, T.H. Wang, S.H. Chien, Y.J. Chang, Best fit refractive index of matching liquid for 3D NIPAM gel dosimeters using optical CT. RADIAT PHYS CHEM, 104:192-197, 2014.

7.     C.C. Chuang, C.H. Shao, C.T. Shih, Y.C. Yeh, C.C. Lu, K.S. Chuang, J. Wu*, A preliminary study of the thermal measurement with nMAG gel dosimeter by MRI. RADIAT PHYS CHEM, 104:404, 2014.

8.     C.T. Shih, J.T. Hsu, R.P. Han, B.T. Hsieh, S.J. Chang, J. Wu*, A novel method of estimating dose responses for polymer gels using texture analysis of scanning electron microscopy images. PLOS ONE, 8(7):e67281. doi:10.1371/journal.pone.0067281, 2013.

9.     H.H. Chen, J. Wu*, K.S. Chuang, J.F. Lin, J.C. Lee, J.C. Lin, Total body irradiation with step translation and dynamic field matching. J BIOMED BIOTECHNOL, doi:10.1155/2013/216034, 2013.

10.   C.T. Shih, Y.J. Chang, B.T. Hsieh, J. Wu*, Microscopic SEM texture analysis of NIPAM gel dosimeters. IEEE T NUCL SCI, 60(3):2155-2160, 2013.

11.   T.Y. Shih, C.T. Shih, Y.J. Chang, C.Y. Yu, B.T. Hsieh, S. J. Chang, J.A. Liang, J. Wu*, Evaluating the characteristics of a novel DEMBIG gel dosimeter using computed tomography. IEEE T NUCL SCI, 60(2):716-721, 2013.

電腦斷層與影像處理相關

1.     Dmytro Luzhbin, J Wu*, Model image-based metal artifact reduction for computed tomography. J DIGIT IMAGING, doi:10.1007/s10278-019-00210-6, 2019.

2.     SP Changlai, CK Huang, Dmytro Luzhbin, FY Lin, J Wu*, Using cine averaged CT imaging with the shallow breathing pattern to reduce respiration-induced artifacts for thoracic cavity PET/CT scans. AM J ROENTGENOL, 213(1):140-146, 2019.

3.     Yan-Lin Liu, Jui-Ting Hsu, Tian-Yu Shih, Dmytro Luzhbin, Chun-Yuan Tu, and Jay Wu*, Quantification of volumetric bone mineral density of proximal femurs using a two-compartment model and computed tomography images. BioMed Research International, 6284269, 2018.

4.     Jay Wu*, Ruo-Ping Han and Yan-Lin Liu, Using a somatosensory controller to assess body size for size-specific dose estimates in computed tomography. BioMed Research International, 2734297, 2018.

5.     H.H. Lin, S.L. Peng, Jay Wu, T.Y. Shih, K.S. Chuang, C.T. Shih, A novel two-compartment model for calculating bone volume fractions and bone mineral densities from computed tomography images. IEEE T MED IMAGING, 36(5):1094-1105, 2017.

6.     C.T. Shih, Jay Wu*, Converting computed tomography images into photon interaction coefficients by using stoichiometric calibration and parametric fit models. MED PHYS, 44(2):510-521, 2017.

7.     C.K. Huang, J. Wu*, K.Y. Cheng, L.K. Pan, Optimization of imaging parameters for SPECT scans of 99mTcTrodat-1 using Taguchi analysis. PLOSONE, 10(3):e0113817. 2015.

8.     Cheng-Ting Shih, Yuan-Jen Chang, Jui-Ting Hsu, Keh-Shih Chuang, Shu-Jun Chang, Jay Wu*, Image reconstruction of optical computed tomography by using the algebraic reconstruction technique for dose readouts of polymer gel dosimeters. PHYS MEDICA, 31:942-947, 2015.

9.     C.T. Shih, J. Wu*, H.H. Lin, S.J. Chang, K.S. Chuang, A novel adaptive discrete cosine transform- domain filter for gap-inpainting of high resolution PET scanners. MED PHYS, 41(8):82501, 2014.

10.   Y.L. Liu, C.T. Shih, Y.J. Chang, S.J. Chang, J. Wu*, Performance enhancement of a Web-based picture archiving and communication system using commercial off-the-shelf server clusters. J BIOMED BIOTECHNOL, http://dx.doi.org/10.1155/2014/657417, 2014.

11.   J. Wu, T.H. Wu, R.P. Han, S.J. Chang, C.T. Shih, J.Y. Sun, S.M. Hsu*, Comparison of the commercial color LCD and the medical monochrome LCD using randomized object test patterns. PLOS ONE, 7(5):e37769. doi:10.1371/journal.pone.0037769, 2012.

成就與榮譽

國內民眾對於核子事故與核災食品仍然充滿了恐懼與不安,為了提升核子災害的應變能量並協助產業發展與食品安全,RMAC實驗室受原能會委託,於國立陽明大學生物醫學影像暨放射科學系完成建立「北部地區輻射災害檢驗分析實驗室」與「食品檢驗分析實驗室」,於核子事故發生時可強化北部地區放射性核種的分析量能,進行環境水樣與環境樣品之輻射污染檢測;於平時可進行食品與飲用水中放射性同位素之分析與相關放射性同位素之研究。實驗室已於107年4月通過全國認證基金會(TAF)認證,於108年7月通過衛生福利部(TFDA)食品檢驗機構認證,成為國內少數TAF與TFDA雙認證的放射性同位素檢驗分析實驗室。實驗室持續精進技術能力,於109年5月完成TAF環境保護水樣項目之增項認證與ISO/IEC 17025: 2017改版認證,得以準確地利用純鍺偵檢器與加馬能譜分析評估放射性核種。RMAC實驗室擁有台灣首屈一指的研究設備,得以持續帶領本實驗室精進檢驗分析與研究能量。